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In a previous article we developed an approach to the optimal (minimum variance, unbiased)
statistical estimation technique for the equilibrium displacement of a damped, harmonic oscillator
in the presence of thermal noise. Here, we expand that work to include the optimal estimation
of several linear parameters from a continuous time series. We show that working in the basis of
the thermal driving force both simplifies the calculations and provides additional insight to why
various approximate (not optimal) estimation techniques perform as they do. To illustrate this
point, we compare the variance in the optimal estimator that we derive for thermal noise with
those of two approximate methods which, like the optimal estimator, suppress the contribution to
the variance that would come from the irrelevant, resonant motion of the oscillator. We discuss
how these methods fare when the dominant noise process is either white displacement noise or
noise with power spectral density that is inversely proportional to the frequency (1/f noise). We
also construct, in the basis of the driving force, an estimator that performs well for a mixture of
white noise and thermal noise. To find the optimal multi-parameter estimators for thermal noise,
we derive and illustrate a generalization of traditional matrix methods for parameter estimation
that can accommodate continuous data. We discuss how this approach may help refine the design of
experiments as they allow an exact, quantitative comparison of the precision of estimated parameters
under various data acquisition and data analysis strategies.
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I. INTRODUCTION

In spite of the passage of more than two centuries,
the principle of the torsion pendulum still underlies the
design of instruments to measure ultra-small electrical
or gravitational torques. Ever-improving techniques for
suppressing sources of systematic error in these experi-
ments have motivated corresponding reductions in statis-
tical measurement error. Parallel improvements in opti-
cal design and low-noise electronics have previously met
this challenge, but statistical uncertainty is inevitably
approaching the fundamental thermal-noise limit posed
by the fluctuation-dissipation theorem. Further improve-
ment in signal-to-noise ratio for ambient temperature ex-
periments may be possible only by making optimal or
nearly optimal statistical inference considerations a basis
for the design of measurement protocol, data analysis,
and even instrumentation hardware.

In a previous article we laid the groundwork for an
approach to the optimal (minimum variance, unbiased)
statistical estimation technique for the parameters of a
damped, harmonic oscillator in the presence of thermal
noise (Moore et al. [1], hereafter Paper I), having found
no readily accessible treatment of this problem in the lit-
erature. While that work introduces the foundation of
a useful methodology, its scope is quite limited because
it addresses only the case of a single linear parameter,
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the displacement of pendulum orientation. For a torsion
pendulum under the influence of an external torque, a
simple displacement parameter does not distinguish be-
tween the equilibrium displacement of a pendulum mass
in the presence versus absence of an external torque, the
signature of a torque “signal”. Moreover, a real torsion fi-
bre under load slowly unwinds, also requiring parameter-
ization. Consequently, even without including pendulum
oscillations, a multi-parameter model must be employed.

The purpose of this article is to extend the methodol-
ogy presented in Paper I to include the optimal estima-
tion of several linear parameters. As in the case of a single
linear parameter, we note that traditional methodologies
for estimating multiple parameters fail for a high-Q, long-
period oscillator subject to thermodynamic fluctuations.
The problem faced stems from the oscillator’s response
to the thermal bath; the environment drives the oscilla-
tor with equal power at all frequencies and the oscillator
response is a Lorentzian which peaks sharply at the res-
onant frequency. Just as in the single parameter case,
in order to minimize the variance in the multi-parameter
estimators, one must suppress the variance contribution
from this resonance peak.

Superficially, the issues presented by the resonance
peak, the recovery of a signal, and the unwinding be-
haviour of the torsion fibre, appear straightforward. One
might consider treating the noise as white, then address
each issue serially to produce a composite measurement
approach. First, to remove the effects of the resonance
one could use data from an integer number of oscillation
periods as illustrated in Paper I. Second, to break the
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degeneracy between the free orientation of the pendulum
mass and its orientation in the presence of a source mass,
one could modulate the signal. Then by choosing the
modulation frequency to be distinct from, but commen-
surate with the oscillation frequency, and also choosing
the duration of the data sample to be an integer number
of both oscillation and signal periods, the orthogonality
of the fitted parameters over the measurement interval
could be maintained.

Finally, in order to account for the secular unwinding
behaviour of the torsion fibre one could include in the
model to which the data are fit a few low-order poly-
nomials. However, these polynomials are generally not
orthogonal to the free oscillation of the pendulum. Con-
sequently, the estimating function for the signal is no
longer orthogonal to the resonance peak. At this point
it becomes clear that such a casual approach must give
way to a proper multiple-parameter fitting scheme that
filters the contribution from the resonance peak. As al-
ready mentioned, the absence from the literature of ex-
plicit techniques for optimal parameter estimation in the
analysis of high-Q oscillators in experiments whose preci-
sion may approach the limitation posed by thermal noise
has motivated our search for a practical solution to this
problem.

To set a context for presenting the optimal solution,
we discuss two, straightforward, approximate methods
that suppress the contribution of the resonance peak to
the variances of important model parameters. The first,
which we call the trigonometric method, is to fit the data
optimally for white noise while including the sine and co-
sine oscillation amplitude parameters of the pendulum.
Doing so ensures that the estimators for the remaining
parameters—particularly those that correspond to rele-
vant observables—are immune to the variance contribu-
tion from the resonance.

The second method, which we call the autosum
method, is to pre-filter the data by adding a given re-
alization of pendulum motion to itself displaced by half
an oscillation period, thereby eliminating the effects of
resonant oscillations to a large extent. These pre-filtered
data are then fit optimally for white noise. The auto-
sum method was employed by the Eöt-Wash group at
the University of Washington in their early torsion pen-
dulum experiments (e.g. Su et al. [2]). While that group
has refined this method extensively [3], we selected the
autosum estimation technique since it provides a simple,
contrasting approach to the trigonometric estimator. We
analyze these two methods as examples of how we can
understand and compare their behaviours relative to the
optimal estimate derived using the parameter estimation
formalism introduced in Paper I and extended here. Our
purpose in this work is to illustrate the application of
this formalism and to point out its advantages, not to
critique the methods employed by others.

While these two estimators generally have unequal pa-
rameter variances due to their different weighting of the
data, both methods remove much of the contribution of

the resonance peak to the variances because the associ-
ated filter functions, when expressed in the Fourier repre-
sentation, have a notch with a quadratic minimum at the
resonant frequency. They also share the advantage that
variances remain finite when white displacement noise
is superposed on the thermal noise as is the case in any
real experiment. By comparison, the variance of the opti-
mal thermal-noise estimators diverge when white noise is
present because their displacement estimating functions
include Dirac delta functions (see Paper I). The ubiq-
uity of white noise motivates us to include these approx-
imate methods in our discussion because they represent
the schemes that experimentalists actually employ, and
likely will continue to employ in the future.

Since the optimal estimation method is pathological in
the presence of white noise, comparing it with approxi-
mate methods may appear little more than an interesting
exercise because an experiment can never be conducted
in this idealized context. However, such results establish
a firm lower bound to the variance of a parameter es-
timator enabling one to weigh the benefit of improving
the experimental methods to lower the uncertainty in a
measurement against the labor necessary to implement
such modifications.

Moreover, asking which approximate method is supe-
rior in a real experiment brings up matters of judgment.
An experimentalist must choose an analysis method and
justify the choice in light of many aspects of the exper-
iment at hand. Design questions regarding the advan-
tages of a particular length of a data sample, the most
appropriate phase of the modulated signal, or the effect
of adding additional parameters to the model can be an-
swered with confidence for the case of white noise. For
thermal noise, however, the answers to such questions
appear unresolved in the literature. In this paper we set
forth a basis for such choices.

The major premise of Paper I is that transforming to
the driving-force basis—where the force noise is clearly
white—allows one to readily determine the optimal ther-
mal noise filter for the purpose of estimating a single
parameter from a sample of continuous data. Here we
extend this idea to multi-parameter models. In addition,
we demonstrate a second point that was not emphasized
in Paper I: this white-noise driving-force basis is more
natural than the displacement basis for developing, an-
alyzing, and comparing different parameter estimation
methods—one’s intuition is better served in this basis.
Given the insight gained by working in the driving-force
basis and the tools we develop to fit multi-parameter
models to continuous data, questions about the choices
mentioned above can be readily answered with confidence
and precision.

We begin our discussion with a brief review of the
notation used in Paper I. Then we present a compari-
son of the single-period, optimal thermal-noise estima-
tor of the equilibrium displacement (derived in Paper I)
with a single-period boxcar estimator because the lat-
ter, a uniform average, is the foundation of the two ap-
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proximate estimation methods we consider. We show
in Section II C how to transform an estimating function
from its displacement-basis representation into the basis
of the driving force—the inverse of the transformation
presented in Paper I. We continue with a comparison
of optimal, trigonometric, and autosum single-parameter
estimators of the equilibrium displacement for various
durations of the data sample, and then present a method
to construct (in the driving-force basis) an estimator that
performs well in the case of a mixture of white and ther-
mal noise. The derivation of this new estimator further
demonstrates the advantage of working in the basis of
the driving force.

Following this derivation is a digression to de-
velop the methods required to extend the optimal
single-parameter, thermal-noise estimators to the multi-
parameter case. The basic result is that optimal multi-
parameter estimating functions are orthonormal linear
combinations of the optimal single-parameter estimat-
ing functions derived in Paper I. We are then ready to
compare the full, multi-parameter versions of the opti-
mal, trigonometric, and autosum methods for a modu-
lated signal while also fitting constant and linear poly-
nomial terms to accomodate fibre unwinding. Finally,
we consider a different thermal noise model that is of
particular interest for torsion pendulum experiments. In
moderately high vacuum torsion pendulum experiments,
thermal noise results primarily from torsion fibre internal
loss mechanisms. Empirically, the driving-force power
spectral density in this case is better approximated by a
1/f spectrum rather than the white spectrum of classical
dashpot resistance [4]. Although the optimal methods we
develop no longer strictly apply, we investigate how the
thermal-noise optimal, trigonometric, and autosum vari-
ances compare in the presence of 1/f noise; this in ad-
dition to similar comparisons for dashpot thermal noise,
white noise, and mixed white and thermal noise.

We make two preliminary comments on the presen-
tation of and approximations used in this work. First,
in order to inform the reader’s experimental intuition,
we choose to present concrete examples based on rele-
vant choices for sample duration, signal frequency, etc.
These examples and the estimation methods that we an-
alyze were selected solely to provide illustrations of the
formalism that we develop here and in Paper I. Sec-
ond, because the quality factor, Q, is typically several
thousand in today’s torsion pendulum experiments, we
simplify our calculations by truncating results to leading
order in 1/Q. As mentioned above, traditional meth-
ods of parameter inference fail for a high-Q, long period
oscillator—precisely the regime where this truncation is
justified. Making this approximation here, however, dif-
fers from Paper I in which some results were presented as
exact, closed-form expressions. Note that this work does
not present the analysis of any particular experiment.
Rather, it presents a method by which the performance
of different parameter estimators can be compared under
various noise environments and it demonstrates the con-

ceptual advantages of developing parameter estimators
in the basis of the thermal driving force.

II. OPTIMAL ESTIMATOR VS. BOXCAR
ESTIMATOR FOR A SINGLE PERIOD

As a point of departure, we first compare two estima-
tors for the equilibrium displacement of the oscillator in
the presence of thermal noise, the optimal estimator and
the boxcar estimator. The latter, a simple, uniform av-
erage of the time-domain data, is optimal for the case of
white displacement noise.

A. Linear Single-Parameter Estimates

We recall from Paper I (Eq. 10) that a general param-
eter estimate for a continuous time series is given by

p̂ =

∫

∞

−∞

ep̂(t)x(t)dt (1)

where x(t) is the data (for a torsion pendulum x(t) is
the measured angular displacement), and the estimating
function ep̂(t) is obtained by properly normalizing a filter
function. We again use the convention that a capital
letter (e.g. X(t)) represents an ensemble of realizations
which are represented by lower case letters (e.g. x(t)).
The variance of the corresponding parameter estimator,
expressed in the Fourier representation (Paper I, Eq. 14),
is

var(P̂ ) =
1

2

∫

∞

−∞

F 2 [ep̂(t); ν] S [δX(t); ν] dν (2)

where the Fourier energy density (FED) F 2[ep̂(t); ν] is
the square of the Fourier transform of the estimating
function and S[δX(t); ν] is the power spectral density
(PSD) of the noise ensemble δX(t). Our goal is to calcu-
late the parameter estimator variances to leading order
in 1/Q. For thermal noise, the PSD already contains
a factor of 1/Q, and so we need express the estimating
functions only to zeroth order in 1/Q (that is, we may
use the estimating functions that would be suitable for
an undamped oscillator).

B. Single-Period Optimal Thermal-Noise Estimator

In Paper I we find the optimal estimate of the equi-
librium displacement of the oscillator in the presence of
thermal noise. To zero-order in 1/Q, the single-period,
optimal estimate is (c.f. Paper I, Eqs. 7 & 44)

ĉop = xm +
vf − vi

2πω0

(3)

where xm is the time-average position of the oscillator,
ω0 is the (undamped) oscillation frequency, and vi and
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vf are the initial and final velocities of the oscillator. The
corresponding estimating function is (c.f. Paper I, Eqs.
42 & 43)

eop

ĉ (t) =
Θ(t; ti, tf )

τ0

+
−δ′(t − tf ) + δ′(t − ti)

2πω0

, (4)

where τ0 is the period of the pendulum, Θ(t; ti, tf ) ≡
θ(t− ti)−θ(t− tf ) is the boxcar function, and δ′(t) is the
time derivative of the Dirac delta function. We call this
estimate a “force-only” estimate because its estimating
function is orthogonal to a free-oscillation transient of
arbitrary amplitude and phase. That is,

∫

∞

−∞

eop

ĉ (t) cos(ω0t)dt = 0 (5)

and
∫

∞

−∞

eop

ĉ (t) sin(ω0t)dt = 0. (6)

All such force-only estimators have an estimating func-
tion that can be expressed in the driving-force basis. As
shown in Paper I, the optimal displacement estimating
function for thermal noise is a boxcar in the force basis
(c.f. Paper I, Eq. 46)

yop

ĉ =
Θ(t; ti, tf )

2πmω0

(7)

where m is the mass of the oscillator. Since thermal
noise looks white in the force basis, the variance of the
estimator is readily calculated in the time domain,

var(Ĉop) = 2kBTξ

∫

∞

−∞

y2dt

=
σ2

πQ0

(8)

where σ2 = kBT/κ and kB is the Boltzmann constant, T
is the absolute temperature of the thermal bath, κ is the
torsional spring constant, ξ is the damping coefficient,
and Q0 = mω0/ξ.

C. Transforming Between Driving-Force Basis and
Displacement Basis

In our previous work we showed that an estimating
function in the force basis, yp̂(t), can be transformed into
the corresponding displacement basis estimating function
by using the transpose equation-of-motion operator ΩT

(c.f. Paper I, Eqs. 40 & 41)

ep̂(t) = ΩT [yp̂(t)]

=

(

m
d2

dt2
− ξ

d

dt
+ κ

)

yp̂(t).
(9)

For example, in Paper I eop

ĉ (t) was derived from yop

ĉ (t)
by this method. As we compare the results of various

estimation techniques we wish to exploit the simplifica-
tions that follow from working in the force basis where
the noise power spectrum is white. Doing so requires
that we obtain the force basis estimating function from
the displacement basis estimating function—the inverse
of what we have done before.

A straightforward approach to find yp̂ from ep̂ is to
consider the equation of motion relating the driving force
to the time series

F = Ω[x(t)]

=

(

m
d2

dt2
+ ξ

d

dt
+ κ

)

x(t)
(10)

where Ω is the equation of motion operator. We know
from the solution to this differential equation that, to
leading order in 1/Q,

x(t) =xi cos(ω0(t − ti)) +
vi

ω0

sin(ω0(t − ti))

+
1

mω0

∫

∞

t

F(t′) sin(ω0(t
′ − t))dt′.

(11)

For a high-Q oscillator the quantity ξ ' 0 is very small
and the equation of motion operator is well approximated
by its transpose, Ω ' ΩT . Substituting Ω for ΩT in
equation (9) one obtains the solution for yp̂ that is similar
to that in equation (11)

yp̂(t) =
1

mω0

∫

∞

t

ep̂(t
′) sin(ω0(t

′ − t))dt′ (12)

except that the boundary value terms vanish because the
estimating function must be identically zero outside of
the time series. It is important to note that the yp̂(t)
that results from this equation is valid only when ep̂(t)
satisfies both (5) and (6)—it is force-only, sensitive to the
driving force but not the free oscillation of the pendulum.

D. Single Period Boxcar

Let us now apply this method to a boxcar estimator
(unless otherwise noted the term “boxcar estimator” will
hereafter refer to one constructed in the displacement ba-
sis). We first calculate the force basis estimating function
that corresponds to the boxcar estimator to zeroth order
in 1/Q

ybox
ĉ (t) =

1

mω0

∫

∞

t

Θ(t′;−τ0/2, τ0/2)

τ0

sin(ω0(t
′ − t))dt′

=
Θ(t;−τ0/2, τ0/2)

2πmω0

(1 + cos(ω0t)) .

(13)
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The variance in the corresponding parameter estimator
is now

var(Ĉbox) = 2kBTξ

∫

∞

−∞

y2dt

=

(

3

2

)

σ2

πQ

=
3

2
var(Ĉop).

(14)

Thus, the penalty for using the boxcar estimator instead
of the optimal estimator is a factor of 3/2 increase in the
parameter variance.

To understand the source of this 50% penalty we con-
sider (12) where it follows that a force-only ep̂(t) which
is bounded (that is, never infinite) results in a yp̂(t) that
smoothly transitions to zero at both ti and tf—it is zero
and has zero slope at the endpoints. The cosine term in
(13) serves to match these boundary conditions. Since
the cosine function is orthogonal to a constant function
over one period, the amplitude of the boxcar in (13) must
be the same as in the optimal in order for the estimate
to be unbiased. Finally, because the average value of co-
sine squared is 1/2, the variance increases by 50%. Con-
versely, if one begins with a force-only ep̂(t) that is un-
bounded (e.g. has δ(t)’s or δ′(t)’s at the endpoints), then
the resulting yp̂(t) has discontinuous jumps that corre-
spond to measurements of the boundary conditions of the
oscillator. The fact that the boxcar estimator does not
utilize this boundary information results in its increased
uncertainty in the values of the estimated parameters.

III. COMPARISON OF OPTIMAL,
TRIGONOMETRIC, AND AUTOSUM

ESTIMATORS

The factor of 3/2 in (14) leads one to ask if additional
data improves this result and if the variance in the boxcar

estimator ultimately converges to the optimal value. It
turns out that neither occurs under the approximations
under consideration. Yet, this optimal filter for white
displacement noise can be used to construct an estima-
tor that performs much better when thermal noise dom-
inates. Here we develop and study two estimators, the
autosum and the trigonometric estimators, both of which
are based upon the boxcar estimator. Following that, we
compare the performance of these estimators for the cases
of white noise and “mixed noise”, which has both ther-
mal and white noise components. Finally, we present the
construction of a new estimator that performs well for
cases of mixed noise. The development of this new esti-
mator takes advantage of the intuitive relation between
the performance of an estimator and its functional form
in the driving-force basis. This development is facilitated
by knowledge of the form of the optimal estimator.
A. Thermal Noise and Multiple Period Estimators

Following the calculations in Section II B one can show
that the variance of the optimal estimator times the du-
ration of the data, τ , is

var(Ĉop) × τ =
2σ2

ω0Q0

= constant. (15)

Thus, for three periods of data, the optimal variance has
decreased by a factor of 1/3. Similarly, for three pe-
riods of data the variance in the boxcar estimator has
decreased by a factor of 1/3. This pattern continues for
data that span an integer multiple of oscillation periods.
To leading order in 1/Q the variance in the boxcar esti-
mator remains a factor of 3/2 larger than the optimal.

The autosum estimator improves upon this by averag-
ing the time series with itself displaced by 1/2 period.
However, doing so requires an additional 1/2 period of
raw data. The 3.5-period autosum estimating function is

eas
ĉ =

Θ(t;−1.75τ0, 1.25τ0) + Θ(t; (−1.75 + 0.5)τ0, (1.25 + 0.5)τ0)

6τ0

=0.1667
Θ(t;−1.75τ0,−1.25τ0)

τ0

+ 0.3333
Θ(t;−1.25τ0, 1.25τ0)

τ0

+ 0.1667
Θ(t; 1.25τ0, 1.75τ0)

τ0

(16)

where the “as” superscript represents the “autosum” estimating technique. From (12) this gives the force-basis
estimating function

yas
ĉ =

0.1667

2πmω0

(

(1 − sin(ω0t)) Θ(t;−1.75τ0,−1.25τ0)+2Θ(t;−1.25τ0, 1.25τ0)+(1 + sin(ω0t)) Θ(t; 1.25τ0, 1.75τ0)
)

. (17)

The variance in the corresponding estimator is 112% of
optimal (this numerical result and others from the fol-

lowing discussion will be represented in Figure 3).

To illustrate why the autosum estimator is superior to



6

-2 -1 0 1 2
time HperiodsL

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
m

Ω
0y

pas
HtL

FIG. 1: Graph of the 3.5 period autosum estimating func-
tion. The two dashed curves correspond to the data and the
data displaced by half of one oscillation period. Their sum,
the autosum estimating function, is the solid curve. Note
that the sinusoidal terms contribute only near the ends of the
observation interval, allowing the variance in the equilibrium
displacement estimator to approach the optimal value as the
duration of the data increases.

the boxcar estimator (112% of optimal compared with
150%), recall that the optimal estimating function is a
boxcar in the force-basis. In this basis, the displacement-
basis boxcar is a constant plus a sinusoid whereas the
autosum estimating function is simply a constant with
smooth transitions to zero near the endpoints (sinusoidal
profile). Figure 1 shows the 3.5 period force-basis repre-
sentation of the autosum estimating function as the sum
of its parts. When viewed in the force basis, the autosum
estimating function can be seen to be a better approx-
imation to the optimal estimating function than is the
displacement-basis boxcar.

Comparing the 3-period boxcar estimator with a 3.5-
period autosum estimator is not entirely a fair compari-
son. The variance of a 3-period autosum estimator, which
results from the sum of two mutually displaced 2.5-period
boxcar estimating functions, is 114% of optimal—still sig-
nificantly better than the boxcar estimator. In addition,
while the constituent 2.5-period boxcars are not individu-
ally orthogonal to the pendulum oscillation the 3-period
autosum estimator is. Indeed, any autosum estimator
is a force-only estimator because the unique summation
scheme removes the effect of the free oscillation to zero
order in 1/Q; thus satisfying the conditions (5) and (6).
On the other hand, any boxcar estimator that is a half-
integer number of periods in duration will suffer a signif-
icant penalty of order Q in variance inflation because of
contamination from the pendulum oscillation (as shown
in Paper I).

If we were to use the autosum estimator for a single
period of data, then the resulting variance in the param-
eter estimator would be 150% of the optimal—identical
to the variance for the boxcar. This can be seen the
force-basis representation of this estimator shown in Fig-
ure 1 where, if the flat middle portion of the autosum
estimating function were to vanish, the remaining func-

tion is equivalent to the force-basis representation of the
displacement-basis boxcar, a sinusoid. Thus, within a
few periods of data the autosum estimator improves dra-
matically over the boxcar estimator.

The variance in the autosum estimator continues to
converge toward the optimal estimator as the observa-
tion interval increases because the constant portion of
the force-basis estimating function constitutes a larger
and larger fraction of the total duration. In the force ba-
sis, the primary difference between the autosum estima-
tor and the optimal estimator is the smooth transition at
the edges from the constant value to zero for the former
as opposed to the step function transition for the latter.
For thermal noise, abrupt edges characterize the opti-
mal estimator; however, the consequence of those edges
is shown when white noise, which lacks a high-frequency
cutoff, is present. We discuss the effects of these discon-
tinuities in Section III B.

We now turn our attention to the trigonometric
approach—a different, but straightforward improvement
of the boxcar estimator. The trigonometric estimator re-
sults from including the sine and cosine components of
the free oscillation of the pendulum in the fit. This can
be accomplished, for example, using a general form of the
estimating function

ep̂(t) = Θ(t; ti, tf ) (k0 + k1 cos(ω0t) + k2 sin(ω0t)) (18)

and choosing the values of k0, k1, and k2 such that the
constraints (5) and (6) are satisfied and that the normal-
ization is correct (as stated in equation (12) of Paper I).
The trigonometric approach produces reasonable estima-
tors for any duration of the sample. The 3.5-period esti-
mating functions in the displacement and force bases are
then

etr
p̂ =

Θ(t;−1.75τ0, 1.75τ0)

τ0

(0.2905 + 0.0528 cos(ω0t))

(19)
and

ytr
p̂ =

Θ(t;−1.75τ0, 1.75τ0)

2πmω0

×(0.2905 + 0.0264 cos(ω0t) + 0.0264ω0t sin(ω0t))
(20)

respectively. The variance of the 3.5-period trigonomet-
ric estimator is 118% of optimal, much better than 150%
for the 3-period trigonometric estimator (which is equiv-
alent to the 3-period boxcar). Not only is this estimator
acceptable, but in terms of variance (not variance times
time) the 3.5-period trigonometric estimator is better
than the 4-period trigonometric (or boxcar) estimator.

Although its force-basis estimating function always
contains oscillatory terms and does not, therefore, resem-
ble the constant profile of the optimal estimating func-
tion, the half-integer period trigonometric estimator is
better than its integer period counterpart because there
is a triangular envelope on the sine component of the
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FIG. 2: A comparison of the 3.5-period optimal (solid), au-
tosum (dashed), and trigonometric (dotted) force-basis esti-
mating functions.

oscillation which suppresses the contribution from that
term. Figure 2 overlays the 3.5-period optimal, auto-
sum, and trigonometric estimating functions. For longer
observation times, the trigonometric estimator remains
at 150% of optimal for integer periods and converges to
7/6 = 117% of optimal for half-integer periods, if exam-
ined to first order in 1/Q—this is unlike the autosum es-
timator which converges identically to the optimal. The
top panel of Figure 3 compares the variances in these
three estimators multiplied by the duration of the sam-
ple for 1, 1.5, 3, 3.5, 9, and 9.5 periods of data. The
motivation for using 3 and 9 periods stems from our ex-
amination (later in the discussion) of modulated force
signals. The corresponding half-integer periods are in-
cluded because the autosum estimator uses raw data that
span a half-integer number of periods.

Since the variance in the autosum estimator ap-
proaches that in the optimal estimator as the duration of
the data increases, a practical limit to the length of the
observations is set primarily by factors that lie beyond
mathematical considerations. These could include un-
avoidable non-Gaussian disturbances that partition the
realization or low-frequency noise (drift).

B. White Noise and Mixed Noise

So far we have examined the effects of thermal noise
alone on the variances in these estimators. A real sys-
tem will always display some white displacement noise
as well. For white noise the variance of a given parame-
ter estimator is most easily obtained in the displacement
basis

var(P̂wh) =
η

2

∫

∞

−∞

e2
p̂dt (21)

where η is the (constant) PSD of the noise. Since the
displacement-basis estimating functions involve deriva-
tives of the force-basis estimating functions (see (9)), only
those force-basis estimating functions that are smooth
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FIG. 3: Comparison of variances in the optimal estimator
(black), autosum estimator (dark gray), and the trigonomet-
ric estimator (light gray) in the presence of thermal noise (top
panel) and white noise (bottom panel) for observation inter-
vals equal to 1, 1.5, 3, 3.5, 9, and 9.5 oscillation periods. For
white noise, the variance in the optimal thermal-noise esti-
mator would be infinite and is therefore not shown. Here, the
white noise PSD is normalized to match the zero frequency
limit of the thermal noise PSD [see (22)]

(i.e. second-order differentiable) will have a well defined
variance in the presence of white displacement noise. The
step-function transition exhibited by the estimating func-
tions that are optimal for thermal noise will have Dirac
delta functions and their derivatives in the displacement
basis. Thus, the high-frequency components of white
noise are infinitely amplified by those delta functions and
the variances of the estimators diverge to infinity.

The lower panel of Figure 3 displays the variances in
each of the two approximate estimators for the case of
white noise. For comparison, we normalize the white
noise PSD so that it is equal to the zero frequency limit
of the thermal noise PSD. That is,

S[δXwh(t); ν] = S[δXth(t); ν = 0]

=
4kBTξ

κ2

=
4σ2

Q0ω0

.

(22)

We see from Figure 3 that the trigonometric approach is
always superior to the autosum approach for the case of
white noise, although the difference may be small.

The optimal estimator for white displacement noise is
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TABLE I: Noise mixing ratios for various sample durations
where the trigonometric estimators become superior to the au-
tosum estimators. The autosum estimators are superior when
the white noise contribution is less than the stated amount.

Periods 3 3.5 9 9.5

White Noise Fraction 82% 55% 94% 84%

the boxcar estimator. Both the trigonometric and the
autosum estimators are equivalent to the boxcar estima-
tor for a single period of data, as can be seen in both
panels of Figure 3. For 1.5 periods, the trigonometric es-
timator has smaller variance than the autosum estimator
for both noise processes.

From the calculations in this section we can do more
than qualitatively compare the two approximate estima-
tors; we can identify the ratio of white to thermal noise
where one approach becomes superior to the other. Fol-
lowing the PSD normalization in (22), we state the mix-
ing ratios as the fraction of the total noise power con-
tributed from a given noise process, white or thermal.
Table I outlines the results of this test.

These results indicate that a knowledge of the domi-
nant noise components and their relative importance is
a necessary ingredient informing the choice of the data
acquisition protocol, sample duration, and the param-
eter estimation technique to be applied. Moreover, an
intuitive understanding of how the general shape of an
estimating function depends upon sample duration—and
consequently affects the estimator variance (see Figures
1 and 2)—may prove a valuable guide when confronted
with realistic noise backgrounds or further modifications
to the noise PSD. As an example, we later explore the
case for thermal noise with a 1/f PSD where we apply
the ideas discussed here.

C. Improved Estimator for Mixed Noise

In this section, we present a method to identify an im-
proved estimator for the case of mixed white and thermal
noise. The development of this new estimator is accom-
plished in the basis of the driving force which we claim
enables a more intuitive understanding of the effects of
noise in the system under study. We will call this esti-
mator the “mixed” estimator.

Consider Figure 2, particularly the curves for the auto-
sum and the optimal thermal estimating functions. The
sinusoidal transition near the ends of the autosum esti-
mating function is the primary difference between that
estimator and the optimal thermal estimator. These
transitions are responsible for the excess variance in the
autosum estimator in the presence of thermal noise. Yet,
when white noise is present, it is these smooth transi-
tions that prevent the variance in the autosum estima-

tor from diverging to infinity. In the case where white
noise makes a very small contribution to the total noise,
neither the optimal thermal-noise estimator (which fails
completely) nor the autosum estimator is the best choice.
What is required is an estimating function that resembles
more closely the optimal estimating function but that has
smooth, rather than abrupt, transitions near the end-
points.

One solution is to have a flat estimating function with
sinusoidal transitions near the ends—like the autosum
estimator—but where the transition frequency can be
much faster than the oscillation frequency. One can de-
fine a class of functions, with a single parameter, that are
flat in the force basis and that have smooth, sinusoidal
transitions at the ends. This parameter, which deter-
mines the steepness of the transition, can be interpreted
as the ratio of the transition frequency to the oscillation
frequency. The autosum estimator is the special case
where the value of the parameter is unity and the tran-
sition frequency is equal to the oscillation frequency.

Now, given a specific mixture of white and thermal
noise, one can choose the value of this parameter that
minimizes the total variance in the estimators of the oscil-
lator parameters; the result gives the “mixed” estimator.
We note that the value of the transition frequency can-
not be left completely unconstrained—it must be larger
than one over twice the data duration (ωtrans ≥ 1/2τ).
Figure 4 shows the variance in this class of estimators
as a function of the ratio of the transition frequency
to the oscillation frequency for a single period of data
and where a mixture of 99% thermal noise and 1% white
noise is present. In this case, the minimum variance (and
hence the mixed estimator) occurs when the transition
frequency is roughly 3.2 times the frequency of the pen-
dulum’s free oscillation.

Figures 5 and 6 show the mixed estimating function
in the force basis and the displacement basis respectively
for the case in question. These figures also show the re-
spective boxcar estimating functions (equivalent to both
the trigonometric and the autosum estimating functions)
as well as the estimating function that results from a dis-
crete least squares analysis using 100 sample points.

These figures stand as evidence to support our claim
regarding the improved intuition that comes from work-
ing in the driving-force basis. Consider Figure 6. It is
not clear that the sinusoidal “teeth” at the ends of the
displacement-basis representation of the mixed estimator
are a reasonable approximation to the smoother tran-
sitions of the mixed-noise, optimal estimator (and ulti-
mately the derivatives of Dirac delta functions given in
Equation (4)). If one were working in the displacement
basis alone, one must consider the subtle interplay be-
tween the dynamical characteristics of the system (e.g.
the pendulum mass and torsional spring constant) and
how the effects of force noise are manifest in that system
before the mixed estimator might appear to qualify as an
approximation to the optimal version.

On the other hand, from Figure 5 (the representation
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FIG. 4: This graph shows the estimator variance (solid curve)
for the described class of estimators as a function of the tran-
sition frequency when the noise is a mixture of 99% thermal
noise and 1% white noise. The thin solid line is the minimum
variance for this mixture as calculated numerically. The dot-
ted curve and the dashed curve show the variance contribu-
tions from the thermal noise component and the white noise
component respectively. The minimum occurs near 3.2 times
the resonance frequency.
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FIG. 5: Driving-force basis estimating functions for a single
period of data where 99% of the noise is thermal noise and
1% is white. The dotted curve is the optimal estimating func-
tion, found numerically from 100 discrete points in time. The
dashed line is the boxcar estimating function (equivalent to
the single period autosum and trigonometric estimating func-
tions). The solid curve is the mixed estimating function that
results from the procedure discussed in this section.

of the mixed estimator in the force basis) it can be seen
that the mixed estimator is a function that closely re-
sembles the optimal estimator. Thus, from this perspec-
tive, the quantitative agreement shown in Figure 4 (the
minimum of the thick solid curve compared to the thin
solid line) is not surprising. Moreover, the mixed esti-
mator was constructed in a straightforward manner by
taking the autosum estimator and allowing the middle
portion to become more flattened as the transitions be-
come more steep—approaching the step function tran-
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FIG. 6: Displacement basis estimating functions for a single
period of data where 99% of the noise is thermal noise and
1% is white. The dotted curve is the optimal estimating func-
tion, found numerically from 100 discrete points in time. The
dashed line is the boxcar estimating function (equivalent to
the single period autosum and trigonometric estimating func-
tions). The solid curve is the mixed estimating function that
results from the procedure discussed in this section.

sition of the optimal thermal-noise estimator. Making a
similar construction in the displacement basis is less obvi-
ous since one must devise an appropriate approximation
to a pathological feature (i.e. the derivative of a Dirac
delta function) rather than a step function.

The mixed estimator is useful for several reasons, of
which we mention two. First, one now has an analytic
formulation of an estimator that is optimized for any spe-
cific mixture of white and thermal noise. While the mixed
estimator may not match the true optimal estimator ex-
actly, it will be the optimal estimator subject to the con-
straint that it has the described functional form. The
mixed estimator will perform at least as well as the auto-
sum estimator in the presence of white noise, as well as
the optimal thermal estimator in the presence of thermal
noise, and it will perform better than either the opti-
mal thermal or the autosum estimators for an admixture
of white and thermal noise. As shown in Figure 4 the
difference in variance between the mixed-noise optimal
estimator (found numerically) and the mixed estimator
is quite small.

A second use of the mixed estimator is that, unlike the
autosum estimator, this estimator is defined for data du-
rations that are less than 1/2 of an oscillation period in
length. The autosum estimator is identical to the box-
car estimator for data that is one period in length. As
the duration of the data approaches 1/2 of an oscilla-
tion period, the autosum estimator approaches two dirac
delta functions located at ±1/4τ0 and the variance in the
autosum estimator diverges to infinity. Since the mixed
estimator is not constrained to transition at the oscilla-
tion frequency, it can be used if there were a need to
estimate the parameters of the system using data from
only a fraction of the period.
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IV. FITTING FOR MULTIPLE PARAMETERS

Before expanding the material that we have developed
thus far to include multiple parameters, we first give a
brief review of linear, optimal, multi-parameter fits for
discrete data. We then generalize the discrete case for
use in fitting a continuous time series. For white noise
the techniques for discrete data are readily extended to
continuous data because the data covariance matrix is a
multiple of the identity matrix and thus can be trivially
inverted. For thermal noise, the generalization from dis-
crete to continuous requires that we develop an equiva-
lent formulation of the discrete case that relies on knowl-
edge of the optimal single-parameter filters, which we
derive in Paper I, rather than an explicit inversion of the
data covariance matrix.

A. Linear Multi-Parameter Fits for Discrete Data

For a multi-parameter fit with discrete data, the data
from a particular realization are assembled into a data
vector and the parameters into a parameter vector

x = {x1, x2, . . . , xn}

p = {p1, p2, . . . , pm}.
(23)

Following the convention of Paper I, the true, physical
value of the parameters will be specified by the vector ρ.
The partial derivatives of the data with respect to each
of the parameters constitutes the design matrix, q. To
avoid confusion between vectors and matrices, matrices
will be indicated by an overbar. The data vector can then
be decomposed into a signal vector, the product of the
design matrix with the physical parameter vector, and
a noise vector δx which is a realization of the random
vector δX

x = q ρ + δx. (24)

The noise covariance matrix

mX = 〈δX ⊗ δX〉. (25)

characterizes the second moments of the noise ensemble,
and a parameter estimate vector is obtained by contract-
ing an estimating matrix ep̂ with the data vector,

p̂ = ep̂ x. (26)

Many books (see e.g. Hamilton [5]) develop the gen-
eral theory of optimal, least-squares, parameter estima-
tion for discrete data. Here we simply quote one of the
main results. The optimal estimating matrix that returns
the minimum variance estimate of all parameters in the
presence of the noise δX is

e
op

p̂ =
(

qT m −1
X q

)−1
qT m −1

X (27)

We also note that the design matrix and the optimal esti-
mating matrix are pseudo-inverses (a subclass of Moore-
Penrose pseudo-inverses) having the property

e
op

p̂ q =
(

qT m −1
X q

)−1
qT m −1

X q = I. (28)

If this orthonormality condition were not met, a bias
would be present in the parameter estimates.

B. Optimal White Noise Multi-Parameter Fit for
Continuous Data

Although the autosum method pre-filters the data and
the trigonometric method adds two additional parame-
ters, both methods ultimately fit the data in the manner
that is optimal for white noise. Thus it is instructive to
consider optimal, white noise, multi-parameter fitting in
the continuous limit. For discrete white noise fits, the
data covariance matrix is a multiple of the identity ma-
trix, and the optimal multi-parameter estimating matrix
in (27) simplifies to

e
op

p̂ =
(

qT q
)−1

qT . (29)

The transition from discrete to continuous data is then
straightforward—the design matrix becomes a vector of
functions that is multiplied by the parameter vector to
produce the multi-parameter signal. Thus,

x(t;p) = q(t) · p. (30)

The estimating matrix becomes a vector of functions such
that

p̂ =

∫

∞

−∞

ep̂(t) x(t)dt. (31)

The design vector and the optimal estimating vector of
functions satisfy the orthonormality condition,

∫

∞

−∞

e
op
p̂ (t) ⊗ q(t)dt = I (32)

where ⊗ represents an outer product.
In analogy with the discrete white noise case, the op-

timal estimating functions are obtained from the vector
of design functions,

e
op

p̂ (t) =

(
∫

∞

−∞

q(t) ⊗ q(t)dt

)

−1

q(t) (33)

This equation essentially states that the optimal white
noise estimating functions are linear combinations of the
single-parameter matched filters such that the estimating
functions are orthogonal to the design functions of the
remaining parameters[5].
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C. Optimal Thermal-Noise Multi-Parameter Fit
for Continuous Data

We now consider an alternative formulation of the dis-
crete fit that does not use an explicit inversion of the data
covariance matrix. This formulation is desirable when
analyzing continuous data, since inverting the covariance
matrix would require finding the Green’s function that
diagonalizes the covariance operator. Avoiding this step
simplifies the calculations.

Consider the case of a single-parameter fit to discrete
data. The design matrix and estimating matrix are then
vectors. The optimal estimating matrix

e
op

p̂ =
(

qT m −1
X q

)−1
qT m −1

X (34)

is also a vector and the term
(

qT m −1
X q

)−1
is a multi-

plicative constant. From this result, we define the opti-
mal single-parameter filter,

f
op

p̂ = qT m −1
X (35)

and allow the constant mentioned before to assume the
role of normalization.

To extend this to multi-parameter fits, let us provi-
sionally define an optimal multi-parameter filter matrix
as

f
op

p̂ ≡ qT m −1
X (36)

where each row of the filter matrix is the optimal single-
parameter filter for the corresponding parameter. In ad-
dition, let us assume that the optimal estimating matrix
can be obtained from this filter matrix through multipli-
cation by some square matrix n. Since the optimal esti-
mating matrix and the design matrix are pseudo-inverses

e
op

p̂ q = n f
op

p̂ q = I (37)

the matrix n must have the value,

n =
(

f
op

p̂ q
)

−1

. (38)

Examination of (37) shows that the estimating matrix is

e
op

p̂ = n f
op

p̂ =
(

qT m −1
X q

)−1
qT m −1

X , (39)

in agreement with the optimal estimating matrix (27).

Thus, our assumption that e
op

p̂ = n f
op

p̂ is seen to be
justified. Moreover, we now have an equation for the
optimal estimating matrix

e
op

p̂ =
(

f
op

p̂ q
)

−1

f
op

p̂ , (40)

which does not require explicit knowledge of m −1
X .

With equation (40) one can construct the optimal es-
timating matrix given the optimal single-parameter filter
functions regardless of the means by which those func-
tions were identified (recall that each row of the optimal

filter matrix is merely the optimal filter obtained from a
single parameter fit). While the expressions for the opti-
mal filter matrix (36) and the optimal estimating matrix
(37) are not obviously generalized for continuous data,
taking the expression given in (40) to the continuous limit
is more straightforward since the single-parameter filters
readily generalize to functions of time. This generaliza-
tion was an important part of Paper I; and for thermal
noise, the continuous single-parameter filters can be cal-
culated using equation (40) of that paper.

For continuous data, the resulting vector of optimal
estimating functions is obtained from the vector of single-
parameter filters and the vector of design functions.

e
op

p̂ (t) =

(
∫

∞

−∞

f
op

p̂ (t) ⊗ q(t)dt

)

−1

f
op

p̂ (t) (41)

Similar to the white noise case, this demonstrates the im-
portant result that the optimal thermal-noise estimating
functions are linear combinations of the optimal, single-
parameter filters. We apply this information to a multi-
parameter model and study its consequences in the next
section.

V. FITTING TO A FOUR-PARAMETER
MODEL

The results from this article as well as from our previ-
ous work are valid for a constant-force signal. As stated
in the introduction, such a signal is indistinguishable
from the normal equilibrium displacement of the oscil-
lator. To break this degeneracy one must modulate the
force signal. We maintained in Paper I that our constant-
force results were readily applicable to modulated signals;
we now show when that assertion is justified.

For the purposes of discussion, we choose to modulate
the force signal at 2/3 the oscillation frequency ωs =
2ω0/3. For this choice of ωs, the displacement amplitude
is a factor of

1

1 − (ωs/ω0)2
=

9

5
(42)

larger than for a stationary force of the same magnitude.
This raises the question of whether we should compare
the constant force results to a modulated signal of the
same displacement amplitude or the same driving-force
amplitude. The answer to this question depends upon
the experimental approach that one employs for a given
experiment. For a torsion pendulum experiment that
modulates the signal by smoothly changing the position
of a source mass, it is the magnitude of the applied force
that remains constant as the modulation frequency in-
creases. Thus, a comparison of equivalent driving-force
amplitude provides a more useful comparison of signal-
to-noise ratio.

We parameterize the oscillator’s response as

x(t) =
9

5

as

κ
cos(ωst) +

9

5

bs

κ
sin(ωst) + c0 + c1t (43)
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FIG. 7: Comparison of the estimator variances for cosine (top)
and sine (bottom) signal amplitudes for the multiparameter
fit (see (43)) using the optimal thermal-noise estimator, the
autosum estimator, and the trigonometric estimator in the
presence of thermal noise. The grayscale convention is the
optimal estimator (black), the autosum estimator (dark gray),
and the trigonometric estimator (light gray).

so the variance in signal parameters as and bs reflects
the same uncertainty in the applied force as an equiva-
lent variance in the c parameter introduced in the ear-
lier, single-parameter sections. We rename c as c0, which
corresponds to the equilibrium displacement of the pen-
dulum mass in the absence of the external force, and we
add the parameter c1 to account for a linear drift in the
equilibrium displacement, which commonly occurs as the
torsion fibre relaxes.

A. Modulated Signal and Thermal Noise

With the mathematical tools presented in the previous
section we calculate the variance of the optimal, multi-
parameter estimators for the signal parameters as and bs

when accounting for thermal noise exhibited by the os-
cillator. We compare those variances with the variances
of the estimators from the trigonometric and autosum
approaches. The results of these calculations for 3, 3.5,
9 and 9.5 periods are given in Figure 7.

We see in Figure 7 that modulating the signal causes
the optimal thermal noise variance to be roughly a factor
of two larger than the variance for the constant force esti-
mator. This factor of two could be recovered if the force

were modulated as a square wave instead of a sinusoid—
a technique occasionally implemented [6, 7]. Regardless,
sinusoidal modulation offers the advantage of simulta-
neously measuring both quadrature components of the
signal. Thus, if one requires knowledge of both of these
parameters, then no measurement time is lost. Moreover,
sinusoidal modulation of the signal can help reject grav-
itational systematics with higher azimuthal symmetries
(such as cos(3ωst) or sin(3ωst)).

When fitting these parameters optimally for thermal
noise, the variances of the several sine amplitude estima-
tors are larger than those of the cosine amplitudes. This
effect is due to the greater functional overlap between
the bs and c1 parameters compared to that between as

and c0. The same effects arise for the case of the optimal
white noise fit to these same four parameters. Indeed,
the variances of the optimal thermal-noise estimators are
identical to those of the optimal white noise estimators
without the factor of 9/5 in the expressions for as and
bs, and with the “equivalent” white noise power defined
as in (22) of Section III B.

To see why this is so, let us first denote the case
of an optimal white estimator in the presence of white
noise with the subscript “I” and the case of an opti-
mal thermal-noise estimator in the presence of thermal
noise with the subscript “II”. The component functions
of the design vector for the optimal white-noise fit are
then, qI(t) = {cos(ωst), sin(ωst), 1, t}. For the opti-
mal thermal-noise fit (factors of 9/5 included) they are
qII(t) = {9/5 cos(ωst), 9/5 sin(ωst), 1, t}. The stated
equivalence arises because the four functions of qII(t) in
the driving-force basis are directly proportional to the
four functions of qI(t) in the displacement basis. That
is, to zero-order in 1/Q,

Ω [qII(t)] = κqI(t). (44)

Since all four components of qII(t) are non-zero, it can
be shown that the optimal estimators for thermal noise
must be force-only, and that they may be calculated in
the driving-force basis. Specifically there would be an
analog to (33) in Section IV with e

op

p̂ replaced with y
op

p̂

and with q(t) replaced with Ω [q(t)]. From this, one then
gets

y
op

p̂II = e
op

p̂I/κ. (45)

From (22), one notes a distinguishing factor of κ2 be-
tween the driving-force PSD of case II , 4kBTξ, and the
displacement PSD of case I . When calculating the vari-
ances in the parameter estimates, all of these factors of
κ cancel, yielding identical values for both the optimal
white estimator with white noise and the optimal ther-
mal estimator with thermal noise.

For the autosum estimators, pre-filtering the data leads
one to ask whether the signal amplitude is thereby re-
duced by a factor of two. In fact, it is; however, the noise
is also filtered. For a long data duration the FED is nar-
rowbanded around the signal frequency and the ratio of
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the attenuation in the signal and the attenuation in the
noise is very nearly unity. In this manner, the autosum
estimator approaches the optimal just as it did for the
static case presented in Section III A. In essence, this ar-
gument is the Fourier representation of that discussion.

Unlike the autosum estimators, the trigonometric esti-
mators do not converge to the optimal for a modulated
signal. The narrowbanding argument from the previous
paragraph does not apply for the trigonometric estima-
tors because a significant contribution from the resonance
frequency is required in order to match the necessary
boundary conditions of a force-only estimator—that it
have smooth transitions to zero. Consequently, the ef-
fects on the variance of matching these boundary condi-
tions are not localized to the beginning and end of the
estimating function, and thus their contributions do not
diminish to zero with longer duration measurements.

The DC-signal trigonometric estimators discussed in
Section III may provide a good qualitative understand-
ing of the modulated-signal trigonometric estimators in
this section. However, a comparison of Figures 3 and 7
show important quantitative differences in the estimator
variances between the modulated and static cases. For
example, a common assumption that the DC signal is a
special case of the cosine component of the modulated
signal proves incorrect as the variance of the cosine am-
plitude is larger than optimal by a factor of two instead
the factor of 3/2 for the static case of Section III. Thus, a
specific calculation of the estimator variances is required
to achieve reliable numerical results for a modulated sig-
nal.

B. Modulated Signal and White Noise

The white-noise counterparts to the thermal-noise re-
sults in Figure 7 are shown in Figure 8. The estimator
variances in the presence of white noise are generally a
factor of (5/9)2 smaller than the corresponding estima-
tors in the presence of thermal noise. This follows be-
cause the displacement basis signal becomes 9/5 larger
while the additive noise remains the same. For thermal
noise, the response of the oscillator causes both signal and
noise to increase by the same factor, leaving the signal-
to-noise ratio unchanged.

The trigonometric estimators are nearly optimal in
the presence of white noise because they are, in essence,
optimal white-noise fits but with two additional terms,
a0 cos(ω0t) and b0 sin(ω0t). The differences from the op-
timal case are due to the functional overlap of a0 and b0

with the other four parameters. Since these overlaps tend
to decrease as the data duration increases, the trigono-
metric estimators converge to the optimal.

When compared with the optimal estimators for either
noise process, the autosum estimators are much closer to
optimal for thermal noise than they are for white noise.
The reason for this behaviour is subtle, as the arguments
for high performance of autosum estimators in the pres-

3 3.5 9 9.5
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

va
rHA sL�

Τ�HΚ2 Σ
2 �Q 0L

3 3.5 9 9.5
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Observation Interval HPeriodsL
va

rHB sL�Τ
�HΚ2 Σ

2 �Q 0L
FIG. 8: Comparison of the estimator variances for cosine (top)
and sine (bottom) signal amplitudes for the multiparameter
fit (see Eqn. 43) using the autosum estimator and the trigono-
metric estimator in the presence of white noise. The grayscale
convention is the same as in Figure 3.

ence of thermal noise—that the central portion of the
yp’s approximate matched filters well and that only the
first and last quarter periods deviate significantly from
optimal—would seem to apply just as well to the esti-
mating functions in the displacement basis that are used
to calculate the white noise variances. The reason that
the autosum estimators perform less well in the presence
of white noise becomes clear in Figure 9. By compar-
ing the ep and yp for the sine amplitude in the 3.5-period
trigonometric estimator we see that, by construction, the
ep has jump discontinuities. The yp, on the other hand,
is obtained through a convolution of the ep (see (12) in
Section II) and therefore must be a continuous function.
The ep, with its jump discontinuities, is thus more free
to deviate from an optimal matched filter.

C. Mixed Noise

What about mixed noise and multiparameter fits? For
a modulated signal and with the addition of the poly-
nomial parameters c0 and c1, we can identify the ratios
of thermal to white noise where the autosum estimation
technique gives equal variances to the trigonometric ap-
proach as done in Section III B. These results are given
in table II.

For a measurement scheme in which white noise domi-
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FIG. 9: Comparison of the ep (top) and yp (bottom) for the
autosum estimator for the 3.5-period sine amplitude. The
jump discontinuities that are present in the ep give the auto-
sum estimators larger variance than the trigonometric estima-
tors in the presence of white displacement noise. For thermal
noise the same does not occur because, in the basis where the
thermal driving force is white and the yp is used, there are no
such discontinuities.

TABLE II: Noise mixing ratios for various sample durations
where the trigonometric estimators become superior to the
autosum estimators for the four-parameter model discussed.
The autosum estimators are superior when the white noise
contribution is less than the stated amount.

Periods 3 3.5 9 9.5

White Noise Fraction 79% 82% 95% 94%

nates, the experimenter should likely consider increasing
the modulation frequency closer to resonance in an effort
to increase the signal-to-noise ratio (the signal-to-noise
ratio for thermal noise is independent of the modulation
frequency). In such a situation a resonant method would
be suitable. With some modification to accommodate
non-linear fits, the techniques developed in this article
can be applied to resonant and other large-oscillation-
amplitude detection schemes [7, 8] though a detailed ex-
ploration of that topic lies beyond the scope of this work.

D. 1/f Thermal Noise

For modern torsion balance experiments that are con-
ducted at high vacuum, the predominant damping/noise
mechanism is the fibre dissipating energy rather than
residual gas in the vacuum chamber. Saulson [4] states
that for this scenario a 1/f profile is a better approx-
imation to the driving-force PSD than the white driv-
ing force that is characteristic of a classical dashpot (al-
though 1/f is the common term for this noise process,
we use 1/ν in our formulas in order to avoid confusion
with filter functions). Mathematically, such a spectrum
is less tractable, so there is no simple method for find-
ing the optimal estimating functions as for the oscillator
with dashpot damping.

Nevertheless, we can still calculate and compare the
variances of our estimating functions. We compute these
quantities in the driving-force basis since it is still easier
than in the displacement basis, but we must now numer-
ically integrate the product of the PSD and the FED
(see (2)). We first note that this revised damping of the
oscillator is frequency dependent with a functional form
similar to that of the driving force:

ξ(ν) =
ξ0ν0

ν
. (46)

where ν0 = ω0/(2π) is the resonance frequency (in Hz)
and ξ0 is the velocity damping coefficient that corre-
sponds to the resonance frequency. This form constrains
the observed damping at the resonance frequency to be
the same for both 1/f thermal noise and for dashpot
thermal noise. The variance in the parameter estimators
for 1/f noise is then

var(P̂1/f ) =
1

2

∫

∞

0

F 2[yp̂]S[Ω[δX1/f ]]dν

=
1

2

∫

∞

0

F 2[yp̂] [4kBTξ(ν)] dν

= 2kBTξ0

∫

∞

0

F 2[yp̂]
ν0

ν
dν.

(47)

Here the 1/f subscript signifies that the driving-force
PSD has a 1/f profile.

The zero-frequency PSD singularity for 1/f noise re-
quires the FED of the parameter estimating function
F 2[yp] to have a corresponding zero in order for the vari-
ance to be well defined. That is, yp must be orthog-
onal to a constant force signal. The estimating func-
tions for as and bs are orthogonal to the constant signal
parameterized by c0, and since they are force-only es-
timators, it can be shown that their corresponding yp’s
are also orthogonal to a constant. Thus, the variance
of the estimators for as and bs remain finite. The vari-
ances for all three methods—optimal thermal, autosum,
and trigonometric—are shown in Figure 10 for different
observation intervals. Once again, the signal frequency
ωs = 2ω0/3.
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FIG. 10: Comparison of the estimator variances for cosine
(top) and sine (bottom) signal amplitudes for the multipa-
rameter fit (see (43)) using the optimal thermal-noise esti-
mator, autosum estimator and the trigonometric estimator in
the presence of 1/f noise. The grayscale convention is the
same as in Figure 3.

Comparing variance in the optimal thermal-noise es-
timator for the case of 1/f thermal noise (Figure 10)
with dashpot thermal noise (Figure 7) we see that the
variance with 1/f noise is larger by about 50%. This is
largely because that noise is greater by 50% at the cho-
sen signal frequency. We also see from Figure 10 that
the optimal thermal-noise estimator is slightly inferior
to the autosum estimator for some values of the sample
duration—showing that the optimal thermal-noise esti-
mator is not the true optimal estimator for 1/f thermal
noise, as expected. However, a comparison of the results
for 1/f thermal noise in Figure 10 with the results of both
dashpot thermal noise in Figure 7 and white displacment
noise in Figure 8, indicates that dashpot thermal noise is
the better model to guide the development of an estima-
tor for 1/f thermal noise.

VI. DISCUSSION

The topics discussed in this paper illustrate the differ-
ences between two selected parameter estimation tech-
niques relative to the optimal technique for thermal noise
dominated experiments. A major simplification in the
study and application of parameter estimation for this
case results from working in the basis of the thermal driv-

ing force where the PSD of the noise is white. Equations
(9) and (12) show how to transform between the displace-
ment basis and the driving-force basis.

In the driving-force basis, analysis practices that are
commonly applied to data exhibiting white displacement
noise can be utilized for estimation in the presence of
thermal noise. Working in that basis allows better insight
to and understanding of the results from various approx-
imate methods that experimentalists generally employ.
We also showed that in the driving-force basis, one can
more readily construct estimators, such as the mixed es-
timator, that perform well for the case where the noise
is a mixture of white and thermal.

Additionally, working in the driving-force basis ensures
that a parameter estimator is insensitive to the effects of
the resonance peak. This feature also provides immunity
to transient oscillations induced by disturbances that oc-
cur prior to the data sample, as discussed in Paper I. A
further advantage, for modulated signals, is that the sig-
nal frequency does not have to be commensurate with the
natural oscillation frequency. In fact, there can be two or
more signal frequencies that need not be commensurate
with each other.

While the approach we outline may be applied gen-
erally, the interesting calculations can be truncated to
leading order in 1/Q without losing value to an experi-
mentalist. Specifically, meaningful results are obtained—
and with greater facility—using the undamped approx-
imation for the signal and estimating functions. Be-
sides making analytic calculations simpler, working in
the driving-force basis makes leading-order numerical so-
lutions more robust against artificial influence of power
from the resonance peak.

For a real torsion pendulum experiment, the superposi-
tion of several noise processes is a challenge that requires
one to adopt a data analysis scheme that performs well
under a variety of circumstances, while necessarily being
optimal in none. We have shown that the autosum esti-
mation technique, formerly used by the Eöt-Wash group,
is not only well behaved in the presence of white dis-
placement noise, thermal noise, and 1/f noise but ap-
proaches the performance of the optimal for both white
and thermal noise as the duration of the observations
increase. For 1/f noise, the autosum estimator also per-
forms well relative to the other techniques studied in this
paper, though the singular nature of the 1/f noise spec-
trum renders identifying its corresponding optimal esti-
mators problematic. By using the dashpot thermal noise
results as a guide, one can correctly infer that the auto-
sum estimator is superior to the trigonometric estimator
for 1/f thermal noise; whereas if one had used the white
noise results as a guide, one might erroneously assume
the trigonometric estimator to be superior.

Even with the mathematical tools developed here and
in Paper I, there remain several issues that are impor-
tant to a modern experimental research program that
lie beyond the scope of this paper. One obvious exam-
ple is our a priori assumption regarding knowledge of
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the oscillation frequency and quality factor of the pen-
dulum. One would prefer to identify these quantities
from the same data used to estimate the other param-
eters of the system—especially if the experiment uses a
pendulum that undergoes large amplitude oscillations.
Moreover, for extension to the case of large amplitude
oscillations, the nonlinear nature of both the oscillation
frequency and the decay constant require an additional
generalization of the techniques discussed here. This is
even true of the linear signal parameters of non-resonant,
higher harmonic methods, such as the treatment of the
second harmonic we employ in our own experiments be-
cause signal-to-noise ratio considerations require opera-
tion with large-amplitude oscillations [9]. We leave for

further investigation the extension of techniques intro-
duced here to the optimal estimation of multiple, nonlin-
ear parameters and its implications for torsion pendulum
experiments.
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